
 UNPROTECTED COMPATIBLE

 HIGH-PERFORMANCE GRAPHICS ENGINE
FOR APPLESOFT AND ASSEMBLER 

by ROBY SHERMAN

 BLITTERANG

Backups may be 
made using standard 
copying procedures.

Any version of Apple 
II

DOS 3.3 and ProDOS

BlitLib 
Add high performance image drawing to your 
Applesoft BASIC or assembly language 
programs in overwrite or XOR (inverted/xdraw) 
type modes


Blitlib directly uses the graphics you create in a 
standard image format, using your favorite hi-res 
picture editing software, allowing for easy and 
instant access to your graphics for ongoing 
image revisions and last minute tweaks

GetCoords 
Quickly validate and identify the parameter values 
needed by Blitlib to display your images on the 
screen.


ScreenShift 
Invert the hi-res page, force it to shift between 
green/purple and blue/orange palettes, with this 
small library


Demo Programs 
Easy examples in BASIC and assembly show you 
how to put BLITTERANG to work






About the Disk(s)

BLITTERANG is a machine language library designed to help the 
programmer efficiently add custom"draw and go" images (created in 
their favorite graphics programs) to their own software creations 
without having to assemble the graphics into a proprietary (and tough 
to edit) format and display them on the hi-res screen far more 
efficiently than with shape tables or other display options.


WELCOME, BEGINNERS

BLITTERANG is for the semi-experienced Applesoft or assembly 
programmer. If you can BLOAD files, POKE memory addresses, and 
perform CALLs, you know enough to start using BLITTERANG to 
add graphics to your programs. 


DISTRIBUTION AND SUPPORT

The BLITTERANG software and its accompanying manual may be 
distributed non-commercially. Give a copy to your Apple II-loving 
friends, neighbors, and future in-laws.


You are free to incorporate BLITTERANG into your own personal 
software creations but you must BUY A COPY (gasp!) in order to be 
able to legally distribute the library as part of any sellable software 
product! For large endeavors, one copy must be purchased for every 
1,000 sales of your software product.


Licensing BLITTERANG has a number of other benefits as well 
including, access to source code listings, priority support, 
recompilation / relocation assistance, etc. You also let the author know 
that you care and support Apple II software development! Please check 
the Crow Cousins web site for more details!




BLITTERANG FACTS

Before we get too far into what Blitterang can do, it might be good to 
explain what blitting actually means! In a computer system, a blitter is 
a circuit or piece of software that is dedicated to the rapid movement 
and modification of data within that computer's memory. A blitter is 
capable of copying large quantities of data from one memory area to 
another relatively quickly.  
 
In this case, BLITTERANG specializes in copying specified regions of 
your pre-drawn graphical images (what we call "cells") to the Apple II 
hi-res screen ($2000-$3FFF) for display or animation purposes with 
minimal overhead and maximum speed. 


You can draw/edit/refine your cells, using normal graphics drawing 
programs and have instant access to them via BLITTERANG without 
having to constantly embed them back into your software code or 
encode them into some other proprietary (and less accessible) format.


Can't fit all of your cells into a single image? Please refer to OPTIONS 
FOR USING MULTIPLE SOURCE IMAGES for some ideas.




OTHER FEATURES


Besides being "wicked fast" BLITTERANG offers a number of 
wonderful built-in capabilities:


• Support for both bit or byte level image blitting (see the next section 
for more details)


• Overwrite and XOR/XDRAW type drawing modes

• Compact 1.5K library size for situations where bit-level blitting is 

not required

• Support for X coordinates beyond 255 ($FF), up to the full 279 

($117) value

• Automatic memory bleed / wrap-around / corruption prevention on 

reads and write from source images and hi-res screen memory 



BLIT MODES


BLITTERANG can copy multiple cells from a single image onto your 
hi-res screen using its two main blit modes:


Pixel (or bit)-level blitting - Cells are copied 
to the hi-res display based on the exact X 
and Y pixel coordinates you specify. This 
allows for more precise positioning of cells on 
the hi-res screen but it comes at the expense of 
speed (and 3k of memory). (Default)


Byte-level blitting - Cells are copied to the 
hi-res display, aligned at the whole byte 
level. This eliminates a vast amount of 
overhead (providing a 2-3x performance 
boost in the process) but comes at the 
expense of less granularity in positioning 
the cells on the hi-res screen (Y coordinates 
are at the pixel level, but X coordinates and 
width are rounded to the nearest bytes for drawing purposes). 


Essentially this means that moving cells along the X-axis in the byte-
level blit mode will cause them to jump 7 pixels at a time or, (if you 
care about the color not flipping, 14 pixels at a time).


This may or may not be a big deal, depending on what you're trying to 
do with a given blitted cell but, luckily, there is a simple enough 
technique to get around this limitation… CREATE MULTIPLE 
CELLS! That's right, you can create multiple cells that contains more 
granulized movement and display them sequentially before you jump 
to the next byte position along the X-axis!




APPLY MODES


BLITTERANG also supports two different techniques for applying the 
copied cell data onto the hi-res display:


Overwrite - All cell pixels will overlay the corresponding target area on 
the hi-res screen. (Default). This produces the least amount of 
flickering but it should only be used in circumstances where cells will 
not intersect with each other (or the cells are square / rectangular 
shaped)


Exclusive Or (XOR) - Creates an "inverse" effect for all of the cell's lit 
pixels. This is similar to using the XDRAW command in Applesoft 
BASIC (although certainly much faster) to draw (and erase) a shape on 
the screen while preserving the background.


HOW FAST IS IT?

As with all things in life, it depends… Are you calling BLITTERANG 
from Applesoft BASIC, compiled BASIC, or assembly? How large is 
the image you wish to display? Is the image larger vertically or 
horizontally? This simple table will help you to better understand the 
speed tradeoffs for various uses:




FASTER / BETTER PERFORMANCE

Assembly Language Byte-Level Blitting (with Overwrite) Wide cells

Compiled BASIC Byte-Level Blitting (with XOR) Tall cells

Applesoft BASIC Pixel-level Blitting (with Overwrite)

Pixel-level Blitting (with XOR)

SLOWER / LOWER PERFORMANCE

49 27 4d 20  
46 4c 59 49 
4e 47 21



MEMORY USAGE

BLITTERANG typically loads into $6000 and uses 1.6K - 5K 
depending on whether you want to use byte-level or pixel-level, 
blitting, respectively (or both).


49152 ROM $C000

38400 BASIC.SYSTEM 
 

HIMEM MEMORY GROWS

DOWNWARD FROM HERE $9600

32000 FREE MEMORY  
OR COMPILER RUNTIMES 

(E.G. BEAGLE COMPILER)
$7D00

29696 FREE MEMORY $7400

26612 BLITTERANG: PRESHIFT 
 

(REQUIRED FOR PIXEL-LEVEL BLITTING) $6700

24576 BLITTERANG: BLITLIB 
 

(REQUIRED) $6000

16384 HI-RES PAGE 2 
 

(DEFAULT SOURCE 
 IMAGE CELL SPACE  

USED BY BLITTERANG) $4000

8192 HI-RES PAGE 1 
 

(DEFAULT DRAWING SPACE USED

BY BLITTERANG) $2000

2048 APPLESOFT PROGRAMS GROW 
UPWARD FROM HERE $800

1024 TEXT PAGE $400

0 (RESERVED) $0






HOW TO USE BLITTERANG

STEP #1: LOAD IT UP

To use BLITTERANG, you must BLOAD, at the 
very least, the BLITLIB binary file into $6000. 
On the ProDOS version of BLITTERANG, the 
binary lives in the /LIB directory.


]BLOAD LIB/BLITLIB,A$6000


If you wish to also use the bit/pixel-level blit 
capabilities (which are enabled by default), you must 
also BLOAD the PRESHIFT file into $6700, which can also be found 
in the /LIB directory:


]BLOAD LIB/PRESHIFT,A$6700


STEP #2: LOAD A SOURCE IMAGE FILE

Before BLITTERANG can draw images for you, you will need to load 
an image file containing the various "cells" you created. You can use 
your favorite graphics programs as long as the image is saved in an 
uncompressed format (34 sectors in DOS 3.3 or 17 blocks in 
ProDOS). Source image files must meet certain standards in order to 
work well with BLITTERANG. Refer to CREATING SOURCE 
IMAGE FILES for more information.


By default BLITTERANG expects source image files to reside in hi-res 
page 2 (A$4000). We'll discuss customizing this later. For now, let's 
load our demo image at this address.


]BLOAD PICS/PI.BIRDS,A$4000




STEP #3: CONFIGURE BLITTERANG

Using POKEs from BASIC, let's tell BLITTERANG about the cell in 
the source image we want to display, where we want it to appear, and 
how we want it displayed. 

We'll cover these parameters in more detail, later in the manual so 
they'll all make sense!

 

]POKE 24594,1:  REM BYTE-LEVEL BLIT MODE

 
]POKE 24595,0:  REM OVERWRITE TARGET PIXELS

 
]POKE 24579,1:  REM SOURCE X BYTE OFFSET

 
]POKE 24580,30: REM SOURCE Y BYTE/PIX OFFSET

 
]POKE 24588,86: REM IMAGE WIDTH IN PIXELS

 
]POKE 24582,55: REM HEIGHT IN PIXELS

 
]POKE 24587,0: POKE 24586,105:REM DEST X 

 
]POKE 24585,70: REM DEST Y 

STEP #4: CALL


Everything is ready to display your first image! If you're not already in 
HGR mode, let's start it and then call BLITTERANG to display the 
image! 

]HGR



]CALL 24576


You can also call it from

assembly language: 
 
JSR $6000


300: AD 30 C0 

303: 20 ED FD

306: 4C 00 03

300G



CONFIGURABLE PARAMETERS


OPERATION / DRAWING MODES

PARAMETER 
NAME ADDRESS

VALUE 
RANGE DESCRIPTION

TMODE  24594

($6012)

00 (Default), 
01 

Sets the blit mode used when transferring a 
cell into the target hi-res page's memory:


Pixel / bit level blitting (00) is used for 
precise image placement on the screen at 
the specified X,Y target coordinates (at the 
sacrifice of speed and slight image quality). 

Byte level blitting (01) is used for less 
accurate placement along the X-axis 
(rounded down by up to 7 pixels to the 
nearest byte), but with tremendously faster 
performance.

AMODE 24595 
($6013)

00 (Default), 
01

Sets the apply mode used when drawing 
copied pixels onto the target hi-res page: 
 
Overwrite (00) is used to replace all target 
pixels overlapping with the cell


Exclusive Or (XOR)  (01) is used to invert 
any target pixels with defined colored pixels 
(bits) in the cell. Redrawing the same image 
again, in the same target location, will cause 
the overlaid image to disappear.



SOURCE IMAGE / CELL DEFINITION


 

PARAMETER 
NAME ADDRESS

VALUE 
RANGE DESCRIPTION

SRCLEFT 24579

($6003)

00-39

($00-$27)


Starting left byte position for the cell within 
the source image. This can be found by 
using the GETCOORDS program or by 
simply taking the X pixel location within the 
image and dividing it 7.  
 
We could perform this calculation for you, 
but we won't, simply because we want to 
ensure that you're thinking about the left side 
alignment of your cell at the byte level. 
Please see CREATING SOURCE IMAGE 
FILES for more information.


SRCTOP 24580

($6004)

00-191

($00-$BF)

Starting top position for the cell within the 
source image, in bytes/pixels

SRCWPIX 24588 
($600C)

01-255

($01-$FF)

The width of the cell in pixels. When byte-
level blitting is used, the width is bumped to 
align with the next largest byte. 
 
For performance purposes, the cell may not 
be wider than 255 pixels.

SRCHPIX 24582

($6006)

01-190 
($01-$BE)

The height of the cell  in pixels (which also 
happens to be bytes)

$6004

$6003

$600C
<——————————————————————————————————————————————————————————————————>

<—
——
——
——
——
——
——
——
——
——
——
——
——
—-
—>

$6006

The I.S.S. Image Cell



TARGET DEFINITION


ADVANCED SETTINGS (PLAY AT YOUR OWN RISK!)


PARAMETER  
NAME ADDRESS VALUE RANGE DESCRIPTION

X2 / TARLPIX 
(Low Order Byte)


24586

($600A)

If TARLXPIXH =0:

00-255

($00-$FF) 

If TARLXPIXH=1:

00-24 
($00-$18)


The X coordinate on the hi-res screen 
where you wish to start drawing the cell. 


This is used in conjunction with 
TARLPIXH. See next entry. 

X1 / TARLPIXH

(High Order Byte)

24587

($600B)

00-01

($00-$01)

The high order byte used to specify 
target X coordinates >255. If X<255 then 
set this to 00.


For example:  
If X=270 then TARLPIXH=1 and 
TARLPIX=X-256 (14 in this case) 
 
Put another way (in BASIC): 
X1=INT(X/256):X2=X-(X1*256)

Y/ TARTPIX

(TARTOP)

24585 
($6009)

00-192

($00-$C0)

The Y coordinate on the hi-res screen 
where you wish to start drawing the cell

ADDRESS DESCRIPTION

24932, 24997

($6164), ($61A5)

The high order byte pointing to the area of memory where 
BLITTERANG will draw. By default this value is 32 / $20 
corresponding to hi-res page 1 ($2000)

24675, 24976

($6063), ($6190)

The high order byte pointing to the area of memory where 
BLITTERANG reads source image / cell data from. By default this 
value is 64 / $40 corresponding to hi-res page 2 ($4000)



CREATING SOURCE IMAGE FILES

BLITTERANG can access any standard hi-res image created with your 
favorite paint programs.These images are broken down into "cells" 
with each cell containing the shape(s) you wish to have drawn on the 
hi-res screen at one time:


You can have as many cells as you can squeeze into the image 280x192 
pixels (40 bytes x192 bytes), as long as you abide by one simple rule:


The left-most boundary of any cell  
must begin within its own unique byte


This means that in standard hi-res, since a single byte contains 7 on-
screen horizontal pixels, you must take care not to let two cells in a 
share pixels within that same byte.


The easiest away to guarantee that you are following this rule is to 
make sure there is a minimum of 7 horizontal pixels between the left 
and right edges adjacent cells.


Can you make this spacing any tighter? Absolutely! On the next couple 
of pages we'll discuss some other tools and techniques to help!




USE OUR TEMPLATE!

We've created a sample image for you, called PI.TEMPLATE in the 
PICS subdirectory. It contains byte markers (lit pixels) showing where 
each column of bytes begins on the source image. The 6 horizontal 
pixels following these markers are all part of the same on-screen byte.


Simply make a copy of this file and open it in your favorite paint 
program, and start drawing your various object cells, making sure each 
cell's leftmost edge doesn't overlap with any other cell within the same 
space between the columns of lit pixels. 


When you're done, save your picture and then GETCOORDS to help 
you determine the parameter values used by BLITTERANG for each 
cell you wish to draw. 



GETCOORDS

Are you tired of counting pixels to figure out the dimensions of each 
cell? Did you want to triple check that your cells are spaced properly? 
Just RUN our GETCOORDS helper program and enter the path to 
the image you want to check to get the answers you're looking for 
quickly!


GETCOORDS will display the image containing all of the shapes 
(cells) available for drawing. The image will be superimposed with the 
byte markers (lit pixels) to help you identify the start and stop of the 
cells and to verify that nothing is overlapping within the space in-
between.


Using the W/A/D/X keys, move the blinking cursor around the screen 
mark each cell's top/left and bottom/right locations and 
GETCOORDS will provide you with the appropriate location and size 
parameters used by BLITTERANG (e.g. SRCLEFT, SRCWPIX, etc.)  



When you get to the top/leftmost location of a 
given cell, press the RETURN key to mark this 
position. Next, move the cursor to the cell's 
bottom/rightmost position and press RETURN 
again.


You will then be presented with a list of 
BLITTERANG parameters with their 
decimal values to use in your programs for 
drawing the cell (positional X and Y bytes on 
the source image, width, height, etc.). Write 
down all of the **final** parameter values. If 
you need to repeat the process, simply press a key to 
clear the results and start over.


To move the cursor along faster, simply hold down the CTRL key 
while pressing the movement keys. Need to see below the text window? 
No problem! Simply press the SPACE BAR to show / hide the rest of 
the hi-res page!


Some Other Important Notes About GETCOORDS

• If the left side of a top/left mark is not aligned to the beginning of a 

whole byte, GETCOORDS will round SRCLEFT down to this 
position.


• The width (SRCWPIX) assumes that you will be using bit (pixel)-
level blit alignment. If you plan on using byte-level blitting, this 
value will be rounded up to the next whole byte at drawing time. 
 



DRAWING YOUR FIRST IMAGE

Try It In BASIC!

It's time for a pop quiz! Run GETCOORDS and load the 
example image PICS/PI.MISC. Using the keys described 
on the previous page, scroll the cursor around on the screen 
to identify the SRCLEFT (byte offset), SRCTOP (Y pixel 
value), SRCWPIX (image width in pixels), and SRCHPIX 
(image height in pixels) for the image of the snail! We'll use this 
information to define a new cell.


Do you think you found the right values? Compare your answers to 
ours below:

 
]POKE 24579,0 : REM SRCLEFT

]POKE 24580,66: REM SRCTOP

]POKE 24588,23: REM SRCWPIX

]POKE 24582,16: REM SRCHPIX


]X=100:X1=INT(X/256):X2=X-(X1*256): 
POKE 24586,X2:POKE 24587,X1: REM TARGET X 
 
*** OR *** 
 
]POKE 24586,100:POKE 24587,0: REM TARGET X (RUNS 
FASTER IN BASIC DUE TO NO MATH) 
 

]POKE 24585,100: REM TARGET Y

 

Let's try to draw the snail! Use the following commands to set up the 
environment once Blitlib has been loaded:


]BLOAD PICS/PI.MISC,A$4000

]POKE 24594,0: REM TMODE 0:BIT-LEVEL BLIT

]POKE 24595,0: REM AMODE 0:OVERWRITE MODE

]HGR

]CALL 24576 

If everything went as planned, you should have a wonderful little snail 
now drawn on your screen! If not, check your values and try again! 



Try It In (Mini) Assembler


Here's a similar example as the one on the previous page but 
written in assembler.


]BLOAD PICS/PI.MISC,A$4000

]HGR

]CALL-151

*! 
!300: LDA #$00  		 	 ; SRCLEFT

!302: STA $6003

!305: LDA #$42	 	 	 ; SRCTOP

!307: STA $6004

!30A: LDA #$17	 	 	 ; SRCWPIX

!30C: STA $600C

!30F: LDA #$10	 	 	 ; SRCHPIX

!311: STA $6006


!314: LDA #$00 	 	 	 ; TARGET X1

!316: STA $600B

!319: LDA #$64	 	 	 ; TARGET X2

!31B: STA $600A	 	 

!31E: LDA #$64	 	 	 ; TARGET Y

!320: STA $6009

!323: LDA #$00	 	 	 ; TMODE 0

!325: STA $6012

!328: LDA #$00	 	 	 ; AMODE 0

!32A: STA $6013

!32D: JSR $6000	 	 	 ; CALL BLITLIB

!330: RTS		 	 	 	 ; END 

!(RETURN)

*300G


(Yes, the redundant LDA #$00's are there for illustration purposes only.)




OTHER PROGRAMS

The SCREENSHIFT library


LIB/SCREENSHIFT is a compact library used for 
on screen special effects such as inverting the hi-
res screen, forcing on the hi-order bit on all bytes 
(making all green/purple dots orange/blue), or 
forcing  off the hi-order bit on all bytes (making all 
orange/blue dots green/purple).


To use the library, simply load it into $300 and 
set the parameters:


]BLOAD LIB/SCREENSHIFT,A$0300


]REM ## INVERT

]POKE 779,255:POKE 780,89:CALL 768


]REM ## SET HIGH ORDER BIT (ORANGE/BLUE)

]POKE 779,128:POKE 780,25:CALL 768


]REM  ## UNSET HIGH ORDER BIT (GREEN/PURPLE) 
]POKE 779,127:POKE 780,57:CALL 768


By default, SCREENSHIFT uses hi-res page 1 (the same as blitlib), but it 
can be easily modified to use page 2 by performing the following:


]POKE 771,64:POKE 802,96


Original 
Screen Shifter



Demo Programs


The BLITTERANG disk contains a few fun and 
interesting programs demonstrating various capabilities 
while providing several opportunities to pick things apart for 
learning purposes.  
 
Most demos showing off simple capabilities are coded in 
Applesoft BASIC so they are easy to view. Any assembler 
source code used for performance demonstrations in 
FLAPPY, SNOW, and HEARTS may be found in the LIB 
directory for use with Merlin and other tools.


PROGRAM DESCRIPTION

GREETING Our homage to the classic Beagle Bros graphics greetings 
programs

FLAPPY Demonstrates bit- and byte-level blit performance rates for 
overwrite apply mode drawing from BASIC and assembler

SNOW Demonstrates blitting performance and behaviors of XOR/
XDRAW based apply mode from assembler

HEARTS Similar to SNOW but using the XOR/XDRAW apply mode to draw 
larger, colored cells

TROPI Demonstrates automatic offscreen trimming for cells skirting the 
right and bottom edges of the screen,  along with left side cell 
trimming techniques that may be used as a cell "enters" the 
screen

RADIOACTIVE Demonstrates the full-screen hi-res capabilities of the 
SCREENSHIFT library (inverse, force high-bit on, force high-bit 
off)

XOR.DEMO A simple example of how XOR/XDRAW drawing interacts with a 
variety of background colors

AUTO.ROULETTE A slightly morbid example game written in Applesoft BASIC. How 
much distance can you cover without hitting the mystery 
pedestrian?



Advanced Techniques

Options For Using Multiple Source Images

In some circumstances, you may have more images to display than 
can easily fit on a single source image. Depending on 
your performance needs there are several 

ways you can handle this which are briefly 
discussed below. 


• Read a different source image from disk 
This is the slowest option but it allows you 
to load as many source images as you 
need / can fit from disk, directly into 
$4000 

• Keep multiple images in AUX memory 
If you are only interested in supporting 
enhanced //e's or higher, another option might 
be to copy multiple source images to AUX 
memory and then copy it back down to 
$4000 in main memory when you need it. 
 
For more information on how this may be implemented, we 
highly recommend Inside The Apple //c By Gary Little which may be 
found on Asimov and other Apple II mirrors. 
 

Regardless of which technique you choose it is highly recommended that 
you group the cells on your source images in such a way to minimize the 
number of loads / memory moves needed during a single drawn display or 
animation cycles, to reduce painful waiting for the user! 



FAQs

Q> Do I have to change every single 
parameter each time I call 
BLITTERANG to draw?


A> No. As long as the values for a given parameter (e.g. width or 
height) haven't changed, you don't have to set them again. This will 
actually save you some CPU cycles in drawing a large number of 
images.


Q> Do I need to align the top, bottom, or right sides of my cells to 
byte markers? 


A> No. The top and bottom sides of a cell can start and stop at any Y 
coordinate.


The right-hand side of the cell can stop anywhere as long as it doesn't 
end up sharing a byte with another cell's left-hand side.  
 
As stated earlier in the manual, this can be easily achieved by ensuring 
that there is a minimum of 7 pixels of horizontal space between each 
cell, or by using the template image, etc. Please refer back to 
CREATING SOURCE IMAGES for more information!




Q> Why do I see color clashing around images in the 
background when I use XOR to draw a cell image on top of 
them?


A> The XOR may be transferring a high order bit and then 
taking the opposite value in the underlying image. To 
prevent this from happening, ensure that the colors in 
your cell do not have the high bit set. In other words, 
make sure they are colored with black 0, green, purple, or 
white 0.


Q> GETCOORDS shows me that the left side of one of my 
cells doesn't perfectly align to a byte offset, is this a big deal?


A> Not really. If, for example, your cell can fit between two 
byte markers but it actually spans across three byte markers 
instead, that's fine as long as there are no conflicting pixels from 
other cells within the same area. It just means that it will take 
longer for each line of object to be drawn, because it is 
processing more data.


Q> When I draw a cell, the beginning of an adjacent cell is also drawn, 
why?


A> There may be several reasons for this:

• SRCWPIX is set too wide


• You are using byte-level blitting and the right side of the cell 
you're drawing overlaps the same two byte marker region as the 
beginning of a different cell. 


