UNPROTECTED

Backups may be
made using standard
copying procedures.

COMPATIBLE

Any version of Apple

DOS 3.3 and ProDOS

Ml Ea8uUusSIin
miEro SeETWars

BLITTERANG

HIGH-PERFORMANCE GRAPHICS ENGINE
FOR APPLESOFT AND ASSEMBLER
by ROBY SHERMAN

ﬂlitLib

Add high performance image drawing to your
Applesoft BASIC or assembly language
programs in overwrite or XOR (inverted/xdraw)
type modes

Blitlib directly uses the graphics you create in a
standard image format, using your favorite hi-res
picture editing software, allowing for easy and
instant access to your graphics for ongoing
image revisions and last minute tweaks

_

GetCoords \
Quickly validate and identify the parameter values
needed by Blitlib to display your images on the
screen.

ScreenShift

Invert the hi-res page, force it to shift between
green/purple and blue/orange palettes, with this
small library

Demo Programs

Easy examples in BASIC and assembly show you
how to put BLITTERANG to work J

‘ About the DlSk(S)

BLITTERANG is a machine language library designed to help the
programmer efficiently add custom"draw and go" images (created in
their favorite graphics programs) to their own software creations
without having to assemble the graphics into a proprietary (and tough
to edit) format and display them on the hi-res screen far more
efficiently than with shape tables or other display options.

WELCOME, BEGINNERS

BLITTERANG is for the semi-experienced Applesoft or assembly
programmer. If you can BLOAD files, POKE memory addresses, and
perform CALLs, you know enough to start using BLITTERANG to
add graphics to your programs.

DISTRIBUTION AND SUPPORT

'The BLITTERANG software and its accompanying manual may be
distributed non-commercially. Give a copy to your Apple II-loving
friends, neighbors, and future in-laws.

You are free to incorporate BLITTERANG into your own personal
software creations but you must BUY A COPY (gasp!) in order to be
able to legally distribute the library as part of any sellable software
product! For large endeavors, one copy must be purchased for every
1,000 sales of your software product.

Licensing BLITTERANG has a number of other benefits as well
including, access to source code listings, priority support,
recompilation / relocation assistance, etc. You also let the author know
that you care and support Apple II software development! Please check
the Crow Cousins web site for more details!

BLITTERANG FACTS

Before we get too far into what Blitterang can do, it might be good to
explain what blitting actually means! In a computer system, a blitter is
a circuit or piece of software that is dedicated to the rapid movement
and modification of data within that computer's memory. A blitter is
capable of copying large quantities of data from one memory area to
another relatively quickly.

In this case, BLITTERANG specializes in copying specified regions of
your pre-drawn graphical images (what we call "cells") to the Apple 11
hi-res screen ($2000-$3FFF) for display or animation purposes with

minimal overhead and maximum speed.

You can draw/edit/refine your cells, using normal graphics drawing
programs and have instant access to them via BLITTERANG without
having to constantly embed them back into your software code or
encode them into some other proprietary (and less accessible) format.

Can't fit all of your cells into a single image? Please refer to OPTIONS
FOR USING MULTIPLE SOURCE IMAGES for some ideas.

OTHER FEATURES

Besides being "wicked fast" BLITTERANG offers a number of
wonderful built-in capabilities:

 Support for both bit or byte level image blitting (see the next section
for more details)

e Overwrite and XOR/XDRAW type drawing modes

e Compact 1.5K library size for situations where bit-level blitting is
not required

 Support for X coordinates beyond 255 ($FF), up to the full 279
($117) value

 Automatic memory bleed / wrap-around / corruption prevention on
reads and write from source images and hi-res screen memory

BLIT MODES

BLITTERANG can copy multiple cells from a single image onto your

hi-res screen using its two main blit modes:

Pixel (or bit)-level blitting - Cells are copied

to the hi-res display based on the exact X

and Y pixel coordinates you specify. This
allows for more precise positioning of cells on
the hi-res screen but it comes at the expense of

speed (and 3k of memory). (Defaulr)

Byte-level blitting - Cells are copied to the
hi-res display, aligned at the whole byte
level. This eliminates a vast amount of
overhead (providing a 2-3x performance
boost in the process) but comes at the

expense of less granularity in positioning

the cells on the hi-res screen (Y coordinates
are at the pixel level, but X coordinates and
width are rounded to the nearest bytes for drawing purposes).

Essentially this means that moving cells along the X-axis in the byte-
level blit mode will cause them to jump 7 pixels at a time or, (if you
care about the color not flipping, 14 pixels at a time).

This may or may not be a big deal, depending on what you're trying to
do with a given blitted cell but, luckily, there is a simple enough
technique to get around this limitation... CREATE MULTIPLE
CELLS! That's right, you can create multiple cells that contains more
granulized movement and display them sequentially before you jump
to the next byte position along the X-axis!

APPLY MODES

BLITTERANG also supports two different techniques for applying the
copied cell data onto the hi-res display:

Overwrite - All cell pixels will overlay the corresponding target area on
the hi-res screen. (Default). This produces the least amount of
flickering but it should only be used in circumstances where cells will
not intersect with each other (or the cells are square / rectangular

shaped)

Exclusive Or (XOR) - Creates an "inverse" effect for all of the cell's lit
pixels. This is similar to using the XDRAW command in Applesoft
BASIC (although certainly much faster) to draw (and erase) a shape on
the screen while preserving the background.

HOW FAST IS IT?
As with all things in life, it depends... Are you calling BLITTERANG
from Applesoft BASIC, compiled BASIC, or assembly? How large is
the image you wish to display? Is the image larger vertically or
horizontally? This simple table will help you to better understand the
speed tradeofls for various uses: \

FASTER / BETTER PERFORMANCE

Wide cells

Assembly Language Byte-Level Blitting (with Overwrite)
Compiled BASIC Byte-Level Blitting (with XOR) Tall cells

Applesoft BASIC Pixel-level Blitting (with Overwrite)

Pixel-level Blitting (with XOR)

SLOWER / LOWER PERFORMANCE

MEMORY USAGE
BLITTERANG typically loads into $6000 and uses 1.6K - 5K

depending on whether you want to use byte-level or pixel-level,
blitting, respectively (or both).

49152 ROM $C000
38400 BASIC.SYSTEM
HIMEM MEMORY GROWS
DOWNWARD FROM HERE $9600
32000 FREE MEMORY
OR COMPILER RUNTIMES
(E.G. BEAGLE COMPILER)
$7D00
29696 FREE MEMORY $7400
26612 BLITTERANG: PRESHIFT
(REQUIRED FOR PIXEL-LEVEL BLITTING) $6700
24576 BLITTERANG: BLITLIB
(REQUIRED) $6000
16384 HI-RES PAGE 2
(DEFAULT SOURCE
IMAGE CELL SPACE
USED BY BLITTERANG) $4000
8192 HI-RES PAGE 1
(DEFAULT DRAWING SPACE USED
BY BLITTERANG) $2000
2048 [APPLESOFT PROGRAMS GROW
UPWARD FROM HERE $800
1024 TEXT PAGE $400
0 (RESERVED) $0

HOW TO USE BLITTERANG

STEP #1: LOAD IT UP

To use BLITTERANG, you must BLOAD, at the
very least, the BLITLIB binary file into $6000.
On the ProDOS version of BLITTERANG, the

binary lives in the /LIB directory.

JELOAD LIE-ELITLIE.RA¥cBEA

If you wish to also use the bit/pixel-level blit
capabilities (which are enabled by default), you must
also BLOAD the PRESHIFT file into $6700, which can also be found
in the /LIB directory:

JELOAD LIE-FPRESHIFT.R#F&yY0A

STEP #2: LOAD A SOURCE IMAGE FILE

Before BLITTERANG can draw images for you, you will need to load
an image file containing the various "cells" you created. You can use
your favorite graphics programs as long as the image is saved in an
uncompressed format (34 sectors in DOS 3.3 or 17 blocks in
ProDOS). Source image files must meet certain standards in order to

work well with BLITTERANG. Refer to CREATING SOURCE
IMAGE FILES for more information.

By default BLITTERANG expects source image files to reside in hi-res
page 2 (A$4000). We'll discuss customizing this later. For now, let's

load our demo image at this address.

JELOAD FICS-FI . BIRDS. A¥d4B08H

STEP #3: CONFIGURE BLITTERANG

Using POKEs from BASIC, let's tell BLITTERANG about the cell in
the source image we want to display, where we want it to appear, and
how we want it displayed.

We'll cover these parameters in more detail, later in the manual so
they'll all make sense!

JFOKE 24353%4.,1: EEM EBYTE-LEUEL ELIT MODE
JFOKE 24335.,8: EEM OUERWEITE TAEGET FPIXELS
JFOKE 243¥2.,1: EEM SOURCE » BYTE OFFSET
JFOKE 24588.,328: EEM SOURCE ¥ BYTE~FIx OFFSET
JFOKE 24388.86: EEM IMAGE WIOTH IM PIXKELS
JFOKE 24382.,353: EEM HEIGHT IM FPIXELS

JFOKE 245387.8: FOKE 24586.185:REEM DEST =
JFOKE 24385.7V8: EEM DEST Y%

STEP #4: CALL

Everything is ready to display your first image! If you're not already in
HGR mode, let's start it and then call BLITTERANG to display the
imagel!

JHGE

JCALL 24576

308: a0 i@ @
303+ 28 ED FO
06 40 0@ @3
3060

You can also call it from
assembly language:

J5FE Fe888

CONFIGURABLE PARAMETERS

OPERATION / DRAWING MODES

PARAMETER VALUE
NAME ADDRESS RANGE DESCRIPTION

TMODE 24594 00 (Default), Sets the blit mode used when transferring a
($6012) 01 cell into the target hi-res page's memory:

Pixel / bit level blitting (00) is used for
precise image placement on the screen at
the specified X,Y target coordinates (at the
sacrifice of speed and slight image quality).

Byte level blitting (01) is used for less
accurate placement along the X-axis
(rounded down by up to 7 pixels to the
nearest byte), but with tremendously faster

performance.
AMODE 24595 00 (Default), Sets the apply mode used when drawing
($6013) 01 copied pixels onto the target hi-res page:

Overwrite (00) is used to replace all target
pixels overlapping with the cell

Exclusive Or (XOR) (01) is used to invert
any target pixels with defined colored pixels
(bits) in the cell. Redrawing the same image
again, in the same target location, will cause
the overlaid image to disappear.

SOURCE IMAGE / CELL DEFINITION

PARAMETER VALUE
NAME ADDRESS RANGE DESCRIPTION

SRCLEFT 24579
($6003)
SRCTOP 24580
($6004)
SRCWPIX 24588
($600C)
SRCHPIX 24582
($6006)

00-39
($00-$27)

00-191
($00-$BF)

01-255
($01-$FF)

01-190
($01-$BE)

Starting left byte position for the cell within
the source image. This can be found by
using the GETCOORDS program or by
simply taking the X pixel location within the
image and dividing it 7.

We could perform this calculation for you,
but we won't, simply because we want to
ensure that you're thinking about the left side
alignment of your cell at the byte level.
Please see CREATING SOURCE IMAGE
FILES for more information.

Starting top position for the cell within the
source image, in bytes/pixels

The width of the cell in pixels. When byte-
level blitting is used, the width is bumped to
align with the next largest byte.

For performance purposes, the cell may not
be wider than 255 pixels.

The height of the cell in pixels (which also
happens to be bytes)

$eie

TARGET DEFINITION

PARAMETER
NAME ADDRESS VALUE RANGE DESCRIPTION

X2 / TARLPIX 24586 If TARLXPIXH =0: The X coordinate on the hi-res screen
(Low Order Byte) ($600A) 00-255 where you wish to start drawing the cell.
($00-$FF)
This is used in conjunction with
If TARLXPIXH=1: TARLPIXH. See next entry.
00-24
($00-$18)
X1/ TARLPIXH 24587 00-01 The high order byte used to specify
(High Order Byte) ($600B) ($00-$01) target X coordinates >255. If X<255 then
set this to 00.
For example:
If X=270 then TARLPIXH=1 and
TARLPIX=X-256 (14 in this case)
Put another way (in BASIC):
X1=INT(X/256):X2=X-(X1*256)
Y/ TARTPIX 24585 00-192 The Y coordinate on the hi-res screen
(TARTOP) ($6009) ($00-$C0) where you wish to start drawing the cell

ADVANCED SETTINGS (PLAY AT YOUR OWN RISK!)

ADDRESS DESCRIPTION

24932, 24997 The high order byte pointing to the area of memory where
($6164), ($61A5) BLITTERANG will draw. By default this value is 32 / $20
corresponding to hi-res page 1 ($2000)

24675, 24976 The high order byte pointing to the area of memory where
($6063), ($6190) BLITTERANG reads source image / cell data from. By default this

S\
N

value is 64 / $40 corresponding to hi-res page 2 ($4000)

CREATING SOURCE IMAGE FILES

BLITTERANG can access any standard hi-res image created with your
favorite paint programs. These images are broken down into "cells"
with each cell containing the shape(s) you wish to have drawn on the
hi-res screen at one time:

You can have as many cells as you can squeeze into the image 280x192
pixels (40 bytes x192 bytes), as long as you abide by one simple rule:

The left-most boundary of any cell
must begin within its own unique byte

'This means that in standard hi-res, since a single byte contains 7 on-
screen horizontal pixels, you must take care not to let two cells in a
share pixels within that same byte.

The easiest away to guarantee that you are following this rule is to
make sure there is a minimum of 7 horizontal pixels between the left
and right edges adjacent cells.

Can you make this spacing any tighter? Absolutely! On the next couple
of pages we'll discuss some other tools and techniques to help!

USE OUR TEMPLATE!

We've created a sample image for you, called PL.TEMPLATE in the
PICS subdirectory. It contains byte markers (lit pixels) showing where
each column of bytes begins on the source image. The 6 horizontal
pixels following these markers are all part of the same on-screen byte.

OK Not OK

Simply make a copy of this file and open it in your favorite paint
program, and start drawing your various object cells, making sure each
cell's leftmost edge doesn't overlap with any other cell within the same
space between the columns of lit pixels.

When you're done, save your picture and then GETCOORDS to help
you determine the parameter values used by BLITTERANG for each

cell you wish to draw.

GETCOORDS

Are you tired of counting pixels to figure out the dimensions of each
cell? Did you want to triple check that your cells are spaced properly?
Just RUN our GETCOORDS helper program and enter the path to
the image you want to check to get the answers you're looking for

quickly!

GETCOORDS will display the image containing all of the shapes
(cells) available for drawing. The image will be superimposed with the
byte markers (lit pixels) to help you identify the start and stop of the
cells and to verify that nothing is overlapping within the space in-
between.

Using the W/A/D/X keys, move the blinking cursor around the screen
mark each cell's top/left and bottom/right locations and
GETCOORDS will provide you with the appropriate location and size
parameters used by BLITTERANG (e.g. SRCLEFT, SRCWPIX, etc.)

When you get to the top/leftmost location of a
given cell, press the RETURN key to mark this
position. Next, move the cursor to the cell's
bottom/rightmost position and press RETURN

again.

You will then be presented with a list of
BLITTERANG parameters with their
decimal values to use in your programs for
drawing the cell (positional X and Y bytes on
the source image, width, height, etc.). Write
down all of the **final** parameter values. If
you need to repeat the process, simply press a key to
clear the results and start over.

To move the cursor along faster, simply hold down the CTRL key
while pressing the movement keys. Need to see below the text window?

No problem! Simply press the SPACE BAR to show / hide the rest of
the hi-res page!

Some Other Important Notes About GETCOORDS

e If the left side of a top/left mark is not aligned to the beginning of a
whole byte, GETCOORDS will round SRCLEFT down to this

position.

 'The width (SRCWPIX) assumes that you will be using bit (pixel)-
level blit alignment. If you plan on using byte-level blitting, this
value will be rounded up to the next whole byte at drawing time.

DRAWING YOUR FIRST IMAGE

Try It In BASIC!

It's time for a pop quiz! Run GETCOORDS and load the
example image PICS/PI.MISC. Using the keys described
on the previous page, scroll the cursor around on the screen
to identify the SRCLEFT (byte offset), SRCTOP (Y pixel
value), SRCWPIX (image width in pixels), and SRCHPIX
(image height in pixels) for the image of the snail! We'll use this
information to define a new cell.

Do you think you found the right values? Compare your answers to
ours below:

Qoo
FarArard
—

A W N ARRRR

Tn o 00— nononcn
000000

- m m m

(W Ty T T

N>l AAAA

ra S0
I=-r

@ mmmm
=TT

Mo
I
T I=ZEE

| D
S
iy

]
TARGET =

M= FEF
= = M0ELD
M

M= —ramE
S mwcr-l
-|:|:;{: T TR
M AAAA
mon mmmm
= X TOmoam

o
=T T

e ||
[
=1l
(T
—
Al
mra
=0n

H
O
A

T H Tl el b b b
I x O Tmomm
o = Ml

(L
—A7
mm

M

A
&
&

aT
—O
(mmluw]

-HJ

A: REM TAEGET = CREUHS
ATH

m==
m
_|
g
I
=in
=

My
I:.-\.
=

JFOKE 24385.,188: REEM TRAEGET Y

Let's try to draw the snail! Use the following commands to set up the
environment once Blitlib has been loaded:

JELOAD _PICS-PI . MISC.,Af4008
JFOKE =243294.,8: EEM THMODE @:BIT-LEWEL BLIT
%EEEE 243953,8: EEM AMODE &:0UERWEITE MODE

JCALL 2437&

If everything went as planned, you should have a wonderful little snail
now drawn on your screen! If not, check your values and try again!

Try It In (Mini) Assembler

Here's a similar example as the one on the previous page but
written in assembler.

I
()

Cs-FPI . MISC,A%¥4B0AH

I_

A Ao orororonr l-'-

i SECLEFT
i SECTOP

SECHFI=
i SECHFI=

o 00 Bk Gl

i TARGET &1
i TRARGET =2
i TRARGET ¥
i TMODE 8

i AMODE B

i CALL EBLITLIE
i EMD

R LRRLARDLARDER QREIEMREE

O T OO
QRERRREDHEROHERER OO0k EE
=] M WMo - M

W dEHIEHEEHERE HaEH SRR SRR

I
1
B
B
a
A
A
A
B
B
A
A
A
B
B
a
A
A
A
B
R
o
2

Gl ™ Ced el Cod Gl Gl Cod Gl Ced Cud Ced Cud o] o] Cod o] o] G G] o] -— 3 20
2 WRMMMMNMNMDRrRrRrRrs PRRRRRERE T
QM QO0NGEMmMOoompE 7O~ ES A0

=z —Hi+41 040404040 HO4O40O0-40 1 T

e
L
=

% (Yes, the redundant LDA #$00's are there for illustration purposes only.)

OTHER PROGRAMS
The SCREENSHIFT library

& TS

LIB/SCREENSHIFT is a compact library used for
on screen special effects such as inverting the hi-
res screen, forcing on the hi-order bit on all bytes
(making all green/purple dots orange/blue), or
forcing off the hi-order bit on all bytes (making all
orange/blue dots green/purple).

To use the library, simply load it into $300 and
set the parameters:

0RO LIB<SCREEMSHIFT.RFO3008

IMUERT
r3,222:FPOKE ¥88,83:CALL Yes

I T EA
: :

- m
o
oI OTI
7
mc Mo

e

—_-J
LD
A
=l
oo oom
=A @A

4

T O

I

i

I
#
E ¥
g EH~FUREFLE 2

—_— = —]

Mo M

=lMm 00T
onm ram
=17 U
Ir— I
rd o

—

HGE
-1
LREE
fil-1=:

L0
- =
m

-U
—_d

By default, SCREENSHIFT uses hi-res page 1 (the same as blitlib), but it
can be easily modified to use page 2 by performing the following:

JFOKE V7l.ed4:FOKE S8Z2,356

Demo Programs

The BLITTERANG disk contains a few fun and

interesting programs demonstrating various capabilities
while providing several opportunities to pick things apart for
learning purposes.

Most demos showing off simple capabilities are coded in
Applesoft BASIC so they are easy to view. Any assembler
source code used for performance demonstrations in

FLAPPY, SNOW, and HEARTS may be found in the LIB ==
directory for use with Merlin and other tools.

PROGRAM DESCRIPTION

GREETING Our homage to the classic Beagle Bros graphics greetings
programs
FLAPPY Demonstrates bit- and byte-level blit performance rates for

overwrite apply mode drawing from BASIC and assembler

SNOW Demonstrates blitting performance and behaviors of XOR/
XDRAW based apply mode from assembler

HEARTS Similar to SNOW but using the XOR/XDRAW apply mode to draw
larger, colored cells

TROPI Demonstrates automatic offscreen trimming for cells skirting the
right and bottom edges of the screen, along with left side cell
trimming techniques that may be used as a cell "enters" the
screen

RADIOACTIVE Demonstrates the full-screen hi-res capabilities of the
SCREENSHIFT library (inverse, force high-bit on, force high-bit
off)

XOR.DEMO A simple example of how XOR/XDRAW drawing interacts with a

variety of background colors

AUTO.ROULETTE A slightly morbid example game written in Applesoft BASIC. How
much distance can you cover without hitting the mystery
pedestrian?

Advanced Techniques
Options For Using Multiple Source Images

In some circumstances, you may have more images to display than
can easily fit on a single source image. Depending on

your performance needs there are several
ways you can handle this which are briefly §
discussed below.

e Read a different source image from disk
This is the slowest option but it allows you

to load as many source images as you

need / can fit from disk, directly into
$4000

» Keep multiple images in AUX memory
If you are only interested in supporting
enhanced //e's or higher, another option might
be to copy multiple source images to AUX
memory and then copy it back down to

$4000 in main memory when you need it.

For more information on how this may be implemented, we
highly recommend Inside The Apple //c By Gary Little which may be

found on Asimov and other Apple II mirrors.

Regardless of which technique you choose it is highly recommended that
you group the cells on your source images in such a way to minimize the
number of loads / memory moves needed during a single drawn display or
animation cycles, to reduce painful waiting for the user!

FAQ)s

Q> Do I have to change every single

parameter each time I call

BLITTERANG to draw?

A> No. As long as the values for a given parameter (e.g. width or
height) haven't changed, you don't have to set them again. This will
actually save you some CPU cycles in drawing a large number of
images.

Q> Do I need to align the top, bottom, or right sides of my cells to
byte markers?

A> No. The top and bottom sides of a cell can start and stop at any Y
coordinate.

The right-hand side of the cell can stop anywhere as long as it doesn't
end up sharing a byte with another cell's left-hand side.

As stated earlier in the manual, this can be easily achieved by ensuring
that there is a minimum of 7 pixels of horizontal space between each
cell, or by using the template image, etc. Please refer back to

CREATING SOURCE IMAGES for more information!

Q> Why do I see color clashing around images in the /
background when I use XOR to draw a cell image on top of S
them?

A> The XOR may be transferring a high order bit and then
taking the opposite value in the underlying image. To
prevent this from happening, ensure that the colors in
your cell do not have the high bit set. In other words,
make sure they are colored with black 0, green, purple, or
white 0.

Q> GETCOORDS shows me that the left side of one of my
cells doesn't perfectly align to a byte offset, is this a big deal?

A> Not really. If, for example, your cell can fit between two
byte markers but it actually spans across three byte markers
instead, that's fine as long as there are no conflicting pixels from
other cells within the same area. It just means that it will take
longer for each line of object to be drawn, because it is
processing more data.

Q> When I draw a cell, the beginning of an adjacent cell is also drawn,
why?

A> There may be several reasons for this:
e SRCWPIX is set too wide

* You are using byte-level blitting and the right side of the cell
you're drawing overlaps the same two byte marker region as the
beginning of a different cell.

